DEVELOPMENT OF

SHELL LNG FOR MARINE

Name: Han Juan
Title: China Business Development Director (Downstream LNG)
DEFINITIONS AND CAUTIONARY NOTE

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. In this presentation, joint ventures and associates may also be referred to as “equity-accounted investments”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2013 (available at [www.shell.com/investor] and [www.sec.gov]). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 19th November 2015. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website [www.sec.gov]. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.
PROJECT LNG SUPPLY & DEMAND

Impact of limited supplies (existing supplier issues, deferred projects)
Results in 2012 supply to be lower than 2011

Source: Shell analysis, 2013 IEA New Policies Scenario
LNG as a Cleaner Burning Transport Fuel

Drivers

<table>
<thead>
<tr>
<th>Supply</th>
<th>Abundant global gas reserves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Lower emissions NOx, SOx and particulate matter</td>
</tr>
<tr>
<td>Cost</td>
<td>Lower cost alternative to diesel</td>
</tr>
</tbody>
</table>

Challenges

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>Increasing infrastructure development in conjunction with demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine & Fuel System Cost</td>
<td>Developing technology</td>
</tr>
<tr>
<td>Regulatory</td>
<td>Requires framework that facilitates infrastructure and market development</td>
</tr>
</tbody>
</table>
LNG CAN OFFER A COMPELLING VALUE PROPOSITION

1. Cost competitive fuel
2. Cleaner burning fuel
 - Can contribute to lower local exhaust emissions and global greenhouse gas emissions
3. Proven and reliable LNG engine technology availability
4. LNG Availability, Safe and reliable supply chain
LEVERAGING GASNOR

BUNKER FROM SEMITRAILER

SHIP TO SHIP BUNKERING

BUNKER FROM TERMINAL
The new vessel will be built by STX Offshore & Shipbuilding. It will be based at the port of Rotterdam in the Netherlands, and will load from the new LNG break bulk terminal and jetty to be constructed by the Gas Access to Europe (Gate) terminal. It will also be sea-going and, therefore, able to bunker customers at other locations.
GATE – LONG-TERM LNG FOR TRANSPORT
Environmental related regulations will affect the economics of shipping industry to a large extent.

Acid rains
- Tier II (2011)
- Tier III

Sulphur content in fuel

Greenhouse effect
- Under evaluation by IMO

Particulate matter
- Direct impact on humans
 - Locally regulated
Wärtsilä’s Gas Experience: Dual-Fuel applications – Gas history

- **4S GAS-DIESEL (GD)**
- **4S DUAL-FUEL (DF) WITH BACKUP FUEL MODE**

Timeline:
- **1973 / 1986**: 2S GAS PROTOTYPES
- **1987**: 4S SPARK-IGNITION GAS (SG)
- **1992**: 4S GAS-DIESEL (GD)
- **1995**: 2S DF PROTOTYPE
- **2011 / 2013**: 4S DUAL-FUEL (DF) WITH BACKUP FUEL MODE
Dual-Fuel applications: References

<table>
<thead>
<tr>
<th>Category</th>
<th>Application Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Plants</td>
<td>DF Power Plant: 57 installations, 225 engines, Online since 1997</td>
</tr>
<tr>
<td>Merchant</td>
<td>LNGC: 121 vessels, 481 engines. Conversion: 1 Chem. Tanker, 2 engines conv., Complete gas train, Complete design</td>
</tr>
<tr>
<td>Offshore</td>
<td>PSVs/FPSOs: 20 vessels, 93 engines. Online from 1994. New orders: Harvey Gulf, the first 5 LNG-PSV to be operated in the Gulf of Mexico!</td>
</tr>
<tr>
<td>Cruise and Ferry</td>
<td>LNG ferries: 1 vessel, 4 engines per vessel, Complete gas train, 2800 passengers, In service early 2013</td>
</tr>
<tr>
<td>Navy</td>
<td>Coastal Patrol: DF-propulsion, DF main and auxiliary engines</td>
</tr>
<tr>
<td>Others</td>
<td>IWW: 2 vessel, 3 engines (6 and 8L20DF), 1 pusher option (4x6L20DF)</td>
</tr>
<tr>
<td></td>
<td>TUG: 2 vessel, 2 engines each, Mechanical drive</td>
</tr>
</tbody>
</table>

→ 6 segments → >1300 Engines → > 13’000’000 running hours
Wärtsilä - Your Shorter Route to the Gas Age

Exploration & Drilling
- LNG fuel gas systems for OSVs
- Gensets
- On- & Offshore small scale liquefaction
- Antiflaring/VOC
- Oil separation
- Gas FPSO

Production & liquefaction
- LNG fuel gas systems
- LPG, LEG & LNG cargo handling

Transport & storage
- LNG fuel gas systems
- Jetty & Floating regasification
- Bunkering & barges
- Receiving terminals

Receiving terminals & regasification
- Gas/LNG distribution/logistics
- Feed gas to Power plants

Distribution & transport to the users
World’s biggest LNG powered Cruise Ship: Viking Grace

VIKING GRACE

Vessel: Cruise Ship
Passengers: 2800
Yard: STX Turku, Finland
Owner: Viking Line
Delivery: Jan 2013

Scope of supply:

4*W8L50DF
LNGpac
Fuel Gas handling system
Propulsion
Compact Silencer System

Main Particulars:

L.O.A: 218 m
Breadth: 31.8 m
Draught: 6.8 m
Gross Tonnage: 57000
Service Speed: 22.1 kn
The Viking Grace makes under 50 dB noise at 100 meters distance

This small boat is making more noise than the 2800 passengers Cruise

Source: Viking Line
Viking Grace has been carrying out LNG bunkering since 2013

- Viking Grace has been in operation since January 2013
- Cargo loading/unloading, passengers boarding and LNG bunkering - all at the same time
- Zero missed voyage and Zero delays
- Viking Grace has been on LNG – 24/7

Source: Viking Line
Inland Waterway DF References: Danser Group Koppelverband “Eiger”

1st LNG refit on Inland vessel! Inauguration June 2014!

Built: 2000
Overall length: 177 meter
Width: 11.45 meter
Draft: 2.56 meter
Tonnage: 5300 tonnes
Capacity (4 layers): 348 TEU
Engines: 2x 900 kW
Inland Waterway DF References: Chemgas, 2700 m3 LPGC

Yard: Shipyard Constr. H-Foxhol
Owner: Chemgas Shipping
Delivery: 2014/2015
Amount of vessels: 1 + 1

Wärtsilä scope of supply:

- 1*W8L20DF main engine (8L20DF, 1'408kW)
- Shaft, S&B
- CPP, HR Nozzle

Pictures: Chemgas/Wärtsilä
Inland Waterway DF References: Ostfriesland, Island ferry

Re-engining
Owner: AG Ems
Delivery: 2014
Amount of vessels: 1

Wärtsilä scope of supply:

• 2*W6L20DF main engine (6L20DF, 1'056kW)
• LNGPac 45 m³

Pictures: AG Ems
Complete peace of mind with Wärtsilä total Gas Solutions

Scope of supply: 2x Wärtsilä 6L50DF dual-fuel main engines
2x 6L20DF Auxiliary Gensets
Greabox, CPP, LNG tanks and fuel supply and cargo handling equipment, Safety and Automation systems

Shipowner: Evergas
Shipyards: Sinopacific Offshore Engineering

- Largest ethylene carrier ever
- Reliquefaction plant for high grade C-ethane, Ethylene and LPG
- LNG fuel from deck fuel tanks and from cargo tank boil off gas
- Energy savings from integrated fuel supply and cargo handling systems
Wärtsilä 31: Recipient of the Ultimate Efficiency Award

MOST EFFICIENT 4-STROKE DIESEL ENGINE
YOUR KEY TO LNG
THANK YOU

Anil Soni
Wärtsilä Gas Solutions
anil.soni@Wärtsilä.com